


1  INTRODUCTION 

Since 70% of the Planet Earth is covered by oceans, 
most soils are formed originally as marine sediment. 
As a consequence, the majority of geotextbooks and 
research studies have focused on the interpretation of 
in-situ and laboratory tests involving water-borne de-
posits. It is estimated that approximately 5% of soils 
globally are found to be residual type, formed by the 
inplace disintegration and weathering of parent bed-
rock (USDA 2021), thus the evaluation of geoparam-
eters in residua has been less well understood and 
quantified. 
 In this paper, results from piezocone penetration 
tests (CPTU) in residual sandy silts at a national test 
site in the southeastern USA are presented and inter-
preted. Of specific interest, the interpretation of effec-
tive stress parameters (c' and ') and yield stress pro-
file (p') with depth provide the main focus.  

When standard CPT soundings are performed at 
20 mm/s, the results are considered undrained in 
clays, whereas in sands the response is taken as 
drained (Lunne et al. 1997). For silts, however, it is 
unclear whether the data are undrained or drained, or 
more likely in the regime of partially-drained behav-
ior (DeJong, et al. 2012; Holmsgaard et. al. 2016; 
Blaker et al. 2019).  

2  APPALACHIAN PIEDMONT RESIDUUM 

The Appalachian Piedmont geologic province ex-
tends along the eastern USA ranging from Alabama 
to New Jersey, as shown in Figure 1. In addition to 

the surficial extent, the Piedmont lies beneath 
younger sediments of the Atlantic Coastal Plain de-
posits. Moreover, the Piedmont serves as an im-
portant source of crushed stone, aggregate, and sands 
from quarries, as well as provides the natural founda-
tion bearing material for buildings, bridges, and high-
way pavements for major urbanized centers, includ-
ing Atlanta/GA, Greenville/SC, Columbia/SC, 
Raleigh/NC, Charlotte/NC, Richmond/VA, Washing-
ton/DC, Baltimore/MD, and Philadelphia/PA.  

Figure 1. Extent of Appalachian Piedmont in eastern USA 

 Primary rock types include gneiss and schist of Pre-
cambrian Z-age that were later intruded by granitic 
rocks of Paleozoic age. Residual soils commonly 
form as very fine sandy silts (ML, MH) to very silty 
fine sands (SM) and a dual system (ML-SM) has been 
used in a modified form of the Unified Soil Classifi-
cation System.  

A generalized profile of the residual and saprolitic 
soil and rock types is presented in Figure 2.  In the  
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Figure 2. Generalized soil-rock profile in Piedmont geology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Comparison of mean qt and fs profiles from 22 CPTU 
series (2009 vintage) with 2016 sounding at Opelika test site 

 

southern Piedmont, saprolitic residuum is called par-
tially-weathered rock (PWR) when the standard pen-
etration test (SPT) values exceed 100 blows per foot 
(bpf), whereas in the northern Piedmont, the term de-
composed rock is used and defined when SPT values 
exceed 60 bpf.  

2.1  Opelika test site, Alabama 

Some three decades ago, six national geotest sites 
were established with federal funding in the continen-
tal USA (Benoît & Lutenegger 2000).  

The Opelika test site in Alabama is situated in the 
Piedmont geology and serves as research grounds for 
laboratory, in-situ, geophysical, and full-scale foun-
dation studies (Vinson & Brown 1997; Mayne et al. 
2000; Mayne & Brown 2003; Anderson et al. 2019). 
The site is approximately 150 hectare, owned by the 
Alabama Dept. of Transportation, and managed by 
Auburn University.  

 

2.2  CPTU soundings at Opelika NGES 
During the period from around 1995 to approximately 
2000, many CPTU soundings were conducted at the 
Opelika NGES by several research groups and com-

mercial testing firms (Mayne & Brown 2003). A sta-
tistical summary of some 22 CPTUs at the site are re-
ported by Mayne et al. (2009), as shown by Figure 3. 
At the time of those series of soundings, the ground-
water table was generally found to be around 2 to 3 m 
deep (Anderson et al. 2019).  
 In 2016, two new CPTUs were conducted by Cone-
Tec Group as part of a new research program on en-
ergy piles (Atalay 2019). Results from one of these 
soundings is superimposed on the qt and fs profiles in 
Figure 3, showing very good overall agreement in 
these profiles in magnitudes while also displaying 
some local variations within the residual soil profile 
due to differential weathering. 
 Penetration porewater pressures at the shoulder po-
sition (u2) in the Piedmont residuum is often negative 
below the groundwater table (Finke et al. 2001), as 
evident in Figure 4. The 2016 CPTU reading is also 
shown and differs in that the water table was consid-
erably lower (zw ≈ 10 m), as detailed by Anderson et 
al. (2019).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. CPTU porewater pressure readings in fine sandy silt at 
Opelika test site. 
 
2.3  Groundwater effect on CPTU 

 
The depth to groundwater governs the equilibrium 
porewater pressure (u0) and may affect the CPTU 
readings. Of interest here too is that the soils may be 
either dry, partially- or fully-saturated due to capillar-
ity, since partially saturated soils may occur in the va-
dose zone between the ground surface and groundwa-
ter.  
 In some reported studies involving groundwater ta-
bles and partially saturated soils, the CPTU readings 
can show differences at seasonal changes due to ma-
trix suction, partial or full capillarity, desiccation, and 
rainfall (e.g., Lehane et al. 2004; Huffman et al. 2015; 
Giaceti et al. 2019). In fact, for CPT in residual clayey 
sands derived from sandstone, Giaceti et al. (2019) 
showed changes in qt and fs in the upper 4 m while 
less differences at greater depths. Lehane et al. (2004) 
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had two test areas at the same site, one with euclalyp-
tus trees and one in an open area. The CPTU sound-
ings in the open area did not show seasonal changes, 
while those in the treed area did. Huffman showed 
some seasonal changes in CPTU readings at a silty 
site in Oregon.  
 However, the qt and fs profiles at Opelika do not 
show significant differences in the 2000 and 2016 
profiles of cone and sleeve resistances, despite the 
large changes in groundwater levels.  

Figure 5. Fines content and mean grain size at Opelika 

3  GEOCHARACTERIZATION OF PIEDMONT 

In this section, selected CPTU interpretations in Pied-
mont residuum at Opelika will be compared with la-
boratory results.  

3.1  Laboratory testing of residuum 

An extensive set of drive samples and undisturbed 
tube samples were collected for laboratory testing. 
The lab program included: index testing, grain size, 
one-dimensional consolidation, triaxial compression, 
resonant column, direct shear, and permeability 
(Vinson & Brown 1997).  
 Results from mechanical analyses using sieves of 
recovered samples are presented in Figure 5. The 
measured fines content (FC) and mean grain size 
(D50) are shown with depth to 16 m. It is evident that 
the soil particle sizes are at the threshold demarcation 
between fine-grained soils and coarse-grained soils, 
i.e. D50 = 0.075 mm corresponding to the US No. 200 
sieve.  
 The fines content has a mean value FC = 44 % (n = 
63), thus the dual symbol ML-SM is seen appropriate 
for the fine sandy silts to silty fine sands. Average liq-
uid limits and plasticity indices were 46% and 8%, 
respectively, although many specimens test as non-
plastic (Mayne & Brown 2003). Natural water con-
tents typically range between 20 and 40% in the upper 
16 m, yet specifically for the earlier set of data, the 
mean wn = 29.9 ± 6.2 % (n = 26) that dropped to wn 

= 25.7 ± 7.0% (n = 37) in 2016, presumably due to 
the groundwater drop. 
 Due to the closure of a nearby marble quarry some 
4 km from the site in 2014, the groundwater has now 
begun a recovery toward its former regime (Anderson 
et al. 2019). 

3.2  Yield stress profiles in Piedmont residuum 

Consolidation tests on undisturbed samples from the 
site are reported by Hoyos & Macari (1999). Figure 6 
shows the interpreted profile of yield stress (p') and 
yield stress ratio (YSR = p'/vo') from this test series. 
Assuming that full capillarity occurs in the overbur-
den, a drop in the groundwater table to 20 m and sub-
sequent rise to a depth of 3 m could explain the ap-
parent preconsolidation stress caused by changes in 
effective stress at the Opelika site (Mayne 2013). 
 For CPTU, a generalized first-order evaluation of 
p' is made from (Mayne et al. 2009): 
 
p' = 0.33 qnet

m'    [units of kPa]        (1) 
 
where m' is an exponent that varies with soil type: m' 
= 1.0 (clays), 0.9 (organic soils), 0.85 (silts), 0.80 
(silty sands), and 0.72 (clean quartzitic sands). For the 
fine sandy silts of the Piedmont geology, a value of 
0.83 has been found suitable (Mayne 2013). The pro-
file agrees well with the values from one-dimensional 
consolidation tests, as evident from Figure 6. The 
value of m' has also been related to mean grain size 
(D50), fines content (FC), and material index (Ic), as 
detailed by Agaiby & Mayne (2019). 

Figure 6. Yield stress and YSR at Opelika test site 

3.3  Triaxial friction angle of Piedmont soils 

A total of 23 triaxial compression tests were per-
formed on tube samples taken from the site (Vinson 
& Brown 1997; Brown & Vinson 1998). A summary 
of these tests is presented in Figure 7 giving an overall 
effective stress envelope represented by the Mohr-
Coulomb parameters: c' = 0 and ' = 35.5°.  
 At each sample depth, several CIUC type triaxials 
were conducted where the confining stresses were ap-
plied either at the in-situ overburden, or approxi-
mately half or about double the effective overburden.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Summary triaxial tests at Opelika test site 

Figure 8. Triaxial results for various depths at Opelika 
 
Consequently, an evaluation of the secant effective 
friction angle at six depths is made in Figure 8. Values 
of ' ranged from 33.5° to 37.1°. 
 
4  CPTU EVALUATION OF FRICTION ANGLE 

For CPTU in silts, it is not initially clear whether the 
evaluation should be drained, undrained, or interme-
diate, such as partially-drained (DeJong et al. 2012; 
Holmsgaard et al. 2016; Bihs et al. 2018). This is a 
major conundrum for CPTU interpretation in Pied-
mont fine sandy silts. 

4.1  CPTU evaluation of ' in sands 

At the standard rate of 20 mm/s, CPTU in clean sands 
is considered drained response. Various methods for 

evaluating ' from CPTU in sands are available 
(Ching et al. 2017) including an approach from Rob-
ertson & Campanella (1983): 

' = arctan[0.1 + 0.38∙log10(qt/vo')]            (2) 

A method based on corrected CPT chamber tests from 
Kulhawy & Mayne (1990): 

' = 17.6° + 11.0°∙log10[(qt/atm)/(vo'/atm)0.5]     (3) 

where atm ≈ 1 bar = 100 kPa. A modified form of this 
is given by Robertson & Cabal (2015): 

' = 17.6° + 11.0°∙log10(Qtn)         

where Qtn = (qnet/atm)/(vo'/atm)n is a normalized net 
cone tip resistance that has a variable exponent that 
ranges from about 1 in clays to 0.75 in silts to around 
0.5 in sands.   
 For the Opelika CPTU, the various normalized 
cone resistance parameters (qt/vo', qt1, Q, Qtn) are 
shown in Figure 9a. It can be stated that these profiles 
are quite similar.  
 In fact, a recent study of 27 sands and silty sands 
that were sampled undisturbed using special freezing 
methods and/or gel samplers confirmed the relation-
ships given by both (3) and (4) by comparison with 
laboratory triaxial compression tests (n = 63) and 
field CPTU (Uzielli & Mayne 2019). 

Figure 9. Normalized CPTU parameters at Opelika: (a) cone re-
sistance; (b) porewater pressure ratio. 
 
4.2  CPTU evaluation of ' in clays 

At the standard CPTU rate of 20 mm/s in clays, re-
sponse is taken to be undrained, corresponding to no 
volumetric strains (DeJong et al. 2012). Clays are 
identified when the CPT index Ic ≥ 2.95 (Robertson & 
Cabal 2015). In consideration of clayey silts, a value 
of Ic > 2.6 is often taken to be "undrained" response. 
 A limit plasticity solution developed at the Trond-
heim Institute of Technology (NTH) for CPTU eval-
uation of ' under undrained conditions is available 
from Senneset et al. (1989) that relates Q to ' and Bq: 

2tan (45 '/ 2) exp( tan ') 1

1 6 tan '(1 tan ') q

Q
B
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An approximation for ' is expressed directly as a 
function of Q and Bq for the following ranges: 0.05 
≤Bq < 1.0 and 18° < ' < 45° (Mayne 2007): 

' = 29.5°∙Bq
0.121 ∙[0.256+0.336∙Bq+log10Q]     (6) 

In fact, data on over 105 different clays tested under 
both triaxial compression and CPTU have been cali-
brated to show they give comparable ' values 
(Ouyang & Mayne 2018).  
 
4.3  CPTU evaluation of ' in fissured geomaterials 

For the case where Bq < +0.05, eqn (6) is not valid and 
results from CPTUs at Opelika show Bq ≈ 0, in fact, 
technically the Bq values are negative and average 
around -0.02 to -0.05, as evidenced by Figure 9b. 
Negative porewater pressures are often recorded in 
fissured geomaterials, such as stiff overconsolidated 
clays (Mayne et al. 1990), but also observed in resid-
ual soils (Schneider et al. 2001; Finke et al. 2001).  
 From a measurement viewpoint, Campanella & 
Robertson (1988) showed the u2 readings in a stiff 
clay were either slightly negative or slightly positive 
depending on the specific filter element, and thus u2 
can be affected by the thickness, width, and actual lo-
cation of the porous element. Furthermore, studies by 
DeJong et al. (2007) show that type of fluid (water, 
oil, glycerine, silicone), its viscosity, and degree of 
saturation play a role in porewater pressure measure-
ments during CPTU. Of final note, the NTH solution 
cannot handle negative Bq (Sandven 1990).  
 As such, a value of Bq = 0 is assumed at Opelika 
for CPTU at standard rates of 20 mm/s. An approxi-
mation for (5) when Bq = 0 can be expressed (Ouyang 
& Mayne 2019): 
 
' = 8.18°ꞏlne (2.13ꞏQ)               (7) 
 
4.4  Effective ' from Ic relationship 
 
Using the database on 27 undisturbed sands and silty 
sands, a relationship was also found between ' and 
CPT material index, Ic (Mayne 2020): 
 
' = 53.0° - 6.9° ∙ Ic                 (8) 
 
for values of Ic ≤ 2.6.    
 The profile of Ic at Opelika is presented in Figure 
10 showing the intermediate geomaterial more or less 
follows the threshold value of Ic = 2.60 to 11 m depth.  
  
4.5  CPTU evaluation of ' in Piedmont silts 

The above 4 drained equations [i.e., (2), (3), and (4)] 
one undrained method [i.e., eqn (7)], and CPT index 
expression [i.e., eqn (8)] are all applied to the mean 
CPTU data at Opelika, as shown in Figure 11. Inter-
estingly, all 5 methods approximately agree with each 
other. Moreover, all CPT expressions agree well and 
provide comparable profiles to the effective friction 

angles obtained from the lab triaxial compression test 
series. This likely only occurs for this very silty fine 
sand to very sandy silt because of its high fines con-
tent (average FC = 44%) and material index at the un-
drained-drained border of Ic = 2.60, since the mean 
value of index Ic ≈ 2.7 for this site.  

 

 

 

 

 

 

 

 

 

 
Figure 10. Profile of CPT material index at Opelika 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Profile of effective friction angle from five CPTU ex-
pressions in comparison with triaxial results on natural Opelika 
sand-silt mixture. 

 
5  CONCLUSIONS 
 
Interpretation of CPTU in residual soils is compli-
cated by their mixed constituency of clay, silt, sand, 
and rock particles, as well as considerations of par-
tially drained, fully-drained, and undrained behavior, 
particularly at the standard rate of 20 mm/s. Never-
theless, success was shown for CPTU in residual silts 
and sands (ML-SM) at the Opelika national test site, 
located within the Appalachian Piedmont geologic 
province in eastern USA. Specifically, a means to 
profile the yield stress ratio (YSR) from a generalized 
approach that uses net cone resistance and an expo-
nent m' = 0.82. Moreover, a surprising agreement is 
found in the assessment of effective friction angle ' 
by use of both drained and undrained CPTU equa-
tions that compare well with series of triaxial com-
pression tests.  
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